อุปกรณ์กำเนิดแสงและรับแสง
อุปกรณ์ให้กำเนิดแสง (Transmitter Devices) เป็นอุปกรณ์ที่เปลี่ยนสัญญาณไฟฟ้าให้เป็นสัญญาณแสงเลเซอร์ อุปกรณ์ที่นิยมใช้ในงานการสื่อสารทางแสง เป็นประเภทเลเซอร์ไดโอด หรือเลเซอร์สารกึ่งตัวนำ เพราะเลเซอร์ประเภทนี้มีขนาดเล็ก ราคาถูก ใช้งานได้สะดวกอุปกรณ์ให้กำเนิดเเสงที่นิยมใช้งานมีอยู่ 2 ชนิด คือ ไดโอดเปล่งแสง(Light-Emitting Diode : LED) และเลเซอร์ไดโอด(Laser Diode : LD) ส่วนอุปกรณ์รับแสง (Receiver Devices) เป็นอุปกรณ์เปลี่ยนสัญญาณแสงเลเซอร์กลับไปเป็นสัญญาณไฟฟ้าอุปกรณ์รับแสงที่นิยมใช้ในการสื่อสารทางแสงมี2ชนิดคือโฟโตไดโอด (Photo Diode : PD) และอวาแลนช์โฟโตไดโอด (Avalanche Photo Diode : APD)
ในช่วงระหว่างสถานีส่งสัญญาณและสถานีรับสัญญาณที่เชื่อมด้วยเส้นใยนำแสงจะต้องมี
ในช่วงระหว่างสถานีส่งสัญญาณและสถานีรับสัญญาณที่เชื่อมด้วยเส้นใยนำแสงจะต้องมี
สถานีทวนสัญญาณ(Repeater)ทำหน้าที่ขยายและจัดรูปสัญญาณที่เกิดการผิดเพี้ยนไปในระหว่าง
การเดินทาง แสดงในรูป 3 ในการใช้งานจริง ระยะห่างระหว่างสถานีทวนสัญญาณ(Repeater spacing) จะมีค่าประมาณ 30-50 กิโลเมตร โดยจะขึ้นกับขนาดหรือปริมาณของข้อมูลที่ใช้รับส่ง ตัวอย่างเช่น ระบบสื่อสารด้วยเส้นใยแก้วที่ถูกออกแบบ ใช้งานทั่วไปสามารถรับส่งสัญญาณข้อมูลที่มีขนาด2 Gb/s (สองพันล้านบิตในหนึ่งวินาที) ไปเป็นระยะทาง2,200 กิโลเมตร โดยมีสถานีทวนสัญญาณเพียง 25 สถานี ในทุกๆระยะ 80 กิโลเมตรเท่านั้น
1.ภาคส่งสัญญาณข้อมูล (Transmission Data)
อุปกรณ์สำคัญ ที่ทำให้ระบบสื่อสารด้วยเส้นใยนำแสงแตกต่างจากระบบสื่อสารทั่วไป คืออุปกรณ์ที่ทำหน้าที่รับส่งสัญญาณแสงที่ใช้นำข้อมูลไปในเส้นใยนำแสง โดยมีแหล่งกำเนิดแสง (Light Source)เป็นอุปกรณ์ที่ทำหน้าที่แปลงสัญญาณไฟฟ้าเป็นสัญญาณแสงหรือ E/O Converter แหล่งกำเนิดแสงที่ใช้ในระบบสื่อสารด้วยเส้นใยนำแสงต้องมีคุณสมบัติบางประการ เพื่อให้เหมาะสมกับการใช้งานร่วมกับเส้นใย นำแสงที่ทำจากสารกึ่งตัวนำโดยการปล่อยอิเล็กตรอนในแถบน าไฟฟ้าลงสู่แถบวาเลนซ์(Valence Band) รวมตัวกันของอิเล็กตรอน(Electron)และโฮล(Hole)แล้วปล่อยพลังงานออกมาในรูปของ
โฟตอน(Photon)ซึ่งเป็นอนุภาคของแสงดังต่อไปนี้
1.1สามารถให้แสงที่มีพลังงานหรือความเข้มแสงมากพอที่ทำให้สัญญาณแสงสามารถเดินทางไป
1.1สามารถให้แสงที่มีพลังงานหรือความเข้มแสงมากพอที่ทำให้สัญญาณแสงสามารถเดินทางไป
ได้ตลอดระยะทางของการสื่อสาร
1.2โครงสร้างของแหล่งกำเนิดแสงต้องสามารถส่งพลังงานแสงส่วนใหญ่หรือทั้งหมดเข้าไปในเส้นใยนำแสงที่มีเส้นผ่าศูนย์กลางขนาดเล็กได้นั่นคือมุมของการเปล่งแสงออกจากแหล่งกำเนิดมีลักษณะกระจายเป็นมุมกว้าง อาจใช้อุปกรณ์ที่ทำหน้าที่รวมแสงเช่นเลนส์นูนเข้ามาช่วยเพื่อรวมแสงส่วนใหญ่ให้พุ่งเข้าสู่เส้นใยนำแสงได้
1.3ความยาวคลื่นของแสงที่ได้ต้องมีความเหมาะสมกับเส้นใยแก้วที่ใช้ ในระบบสื่อสารใยแสง ความยาวคลื่นแสงที่เหมาะสมกับเส้นใยแก้วมากที่สุด มีค่าประมาณ1.55ไมครอน รองลงมาอาจได้แก่1.3 ไมครอน และ 0.82 ไมครอน
1.2โครงสร้างของแหล่งกำเนิดแสงต้องสามารถส่งพลังงานแสงส่วนใหญ่หรือทั้งหมดเข้าไปในเส้นใยนำแสงที่มีเส้นผ่าศูนย์กลางขนาดเล็กได้นั่นคือมุมของการเปล่งแสงออกจากแหล่งกำเนิดมีลักษณะกระจายเป็นมุมกว้าง อาจใช้อุปกรณ์ที่ทำหน้าที่รวมแสงเช่นเลนส์นูนเข้ามาช่วยเพื่อรวมแสงส่วนใหญ่ให้พุ่งเข้าสู่เส้นใยนำแสงได้
1.3ความยาวคลื่นของแสงที่ได้ต้องมีความเหมาะสมกับเส้นใยแก้วที่ใช้ ในระบบสื่อสารใยแสง ความยาวคลื่นแสงที่เหมาะสมกับเส้นใยแก้วมากที่สุด มีค่าประมาณ1.55ไมครอน รองลงมาอาจได้แก่1.3 ไมครอน และ 0.82 ไมครอน
1.4 ช่วงเวลาตอบสนอง(Response time)ของแหล่งกำเนิดหรือช่วงเวลาที่แหล่งกำเนิดได้รับสัญญาณไฟฟ้า แล้วสร้างสัญญาณแสงออกมา ต้องมีค่าสั้นมากๆอันจะมีผลทำให้ได้วงจรขับสัญญาณแสงสามารถส่งข้อมูลด้วยความเร็วสูงหรือมีปริมาณมากๆได้ดังนี้
1.5กำลังงานแสงต้องมีค่าคงที่ต่อเนื่องตลอดเวลา และไม่มีการเปลี่ยนแปลงใดๆอันเนื่องจากผลของอุณหภูมิ และสภาพแวดล้อมขณะใช้งาน
1.5กำลังงานแสงต้องมีค่าคงที่ต่อเนื่องตลอดเวลา และไม่มีการเปลี่ยนแปลงใดๆอันเนื่องจากผลของอุณหภูมิ และสภาพแวดล้อมขณะใช้งาน
2.แหล่งกำเนิดแสง (Light Source)
จากรูป แสดงแนวคิดแหล่งกำเนิดแสงผ่านเส้นใยนำแสงในทางปฏิบัติ การกำเนิดแสงแบ่งเป็น 2 ลักษณะคือ การปล่อยเอง (Spontaneous Emission) และการปล่อยแบบกระตุ้น (Stimulated Emission) การกำเนิดโดยการปล่อยแบบกระตุ้น ทำให้ได้แสงที่มีความเข้มสูงซึ่งเป็นหลักการกำเนิดแสงของเลเซอร์ (LASER)เหมาะกับการสื่อสารทางไกลในขณะที่แอลอีดี (LED) กำเนิดแสงโดยการปล่อยเอง ทำให้แสงที่ได้มีความเข้มต่างๆ ไม่สามารถสร้างลำแสงแบบโหมดเดียวได้ สำหรับงานสื่อสารทางไกล
รูปแสดง การกำเนิดแสง (ก) การปล่อยเอง (ข) การปล่อยแบบกระตุ้น
การกำเนิดแสงด้วยสารกึ่งตัวนำจะใช้รอยต่อพีเอ็น (P-N)เป็นโครงสร้างพื้นฐานโดยการให้ไบอัสตรงกับรอยต่อพีเอ็นเป็นผลให้โฟตอนของแสงได้ความถี่และความยาวคลื่นของแสงออกมาขึ้นอยู่กับช่องว่างพลังงาน (Energy Gap : EG) ของสารกึ่งตัวนำ
ตัวอย่างของแหล่งกำเนิดแสงที่สร้างจากสารกึ่งตัวนำGaAsซึ่งมีค่าEg = 1.13 eVจะปล่อยแสงออกที่ความยาวคลื่นเท่ากับ 0.87 µm ซึ่งเป็นแสงในย่านอินฟาเรดไม่สามารถมองเห็นด้วยตาเปล่า เหมาะสำหรับการสื่อสารระยะใกล้ ใช้ในงานเครือข่ายคอมพิวเตอร์ภายในอาคารแหล่งกำเนิดแสงที่นิยมใช้กันมากในระบบแสงและเส้นใยนำแสง ได้แก่แหล่งกำเนิดแสงสารกึ่งตัวนำ เช่นไดโอดเลเซอร์และไดโอดเปล่งแสงที่มีความต้องการกำลังไฟฟ้าต่างๆ เป็นต้น
3.ภาครับสัญญาณข้อมูล (Receiver Data)
อุปกรณ์รับข้อมูลทางแสง(Photo Detector)ตัวตรวจจับแสงหรือ โฟโต้ดีเทคเตอร์ เป็นอุปกรณ์ที่ใช้รับสัญญาณข้อมูล (Receiver Data)แล้วแปลงสัญญาณแสงเป็นสัญญาณไฟฟ้า(O/E) ซึ่งโดยปกติสัญญาณแสงที่เครื่องรับปลายทางในระบบสื่อสารทางแสงจะมีขนาดต่างมากและ
มีการผิดเพี้ยนเกิดขึ้นเสมอดังนั้นในระบบสื่อสารทางแสงจึงต้องการโฟโต้ดีเทคเตอร์ที่มี
ประสิทธิภาพสูงมากกล่าวคือโฟโต้ดีเทคเตอร์จะต้องมีความไวในการรับสูงให้ผลตอบสนองต่อ
สัญญาณแสงที่ดีรวดเร็วแบนด์วิธกว้าง (High Bandwidh) และเกิดสัญญาณรบกวนต่างๆ มากในย่านความยาวคลื่นที่ใช้งานโฟโต้ดีเทคเตอร์มีอยู่หลายชนิด เฉพาะโฟโต้ดีเทคเตอร์ที่ใช้สารกึ่งตัวนำ หรือที่เรียกว่าโฟโต้ไดโอด (Photo diode) เป็นแบบที่มีความเหมาะสมกับการประยุกต์ใช้งานด้านการสื่อสารทางแสง เนื่องจากมีนาดเล็กมีความไวสูงและให้ผลตอบสนองที่รวดเร็ว
-ไดโอด APD (Avalanche Photo Diode)
ไดโอดAPDมีโครงสร้างคล้ายกับพินไดโอดแต่มีชั้นของสารกึ่งตัวนำเป็น n+pip+ซึ่งตรงรอยต่อระหว่างn+(โด๊ปให้มีปริมาณของอิเล็กตรอนสูงมาก)และp จะเกิดเป็นบริเวณที่สนามไฟฟ้ามีค่าสูงมากเมื่อได้รับการไบแอส ทำให้เกิดการชนกันของอิเล็กตรอนและโฮลในบริเวณนี้ทำให้ทั้งอิเล็กตรอนและโฮลเกิดการแตกตัวและมีปริมาณเพิ่มขึ้นเป็นทวีคูณดังนั้นค่ากระแสที่ได้จากการตรวจจับแสงจึงมีค่าเพิ่มเป็นทวีคูณด้วยกล่าวคือเกิดการขยายของกระแสไฟฟ้าขึ้นภายในตัวไดโอด APD ซึ่งปรากฏการณ์นี้เรียกว่า avalanche effect โดยค่าที่ทวีคูณ (Multiplication : M) ได้จากนิยามดังนี้
โดยที่ IM เป็นค่าเฉลี่ยของกระแสเอาต์พุตเมื่อมีการทวีคูณ
IP เป็นกระแสในกรณีที่ไม่มีการทวีคูณ
IP เป็นกระแสในกรณีที่ไม่มีการทวีคูณ
รูปแสดงโครงสร้างของไดโอดAPD
ไดโอดรับแสงแบบ APD จะมีโครงสร้างและลักษณะของสนามไฟฟ้าดังรูป จะเห็นว่ามีสาร P+ มาต่อที่ปลายอีกด้านหนึ่งของสารกึ่งตัวนำบริสุทธิ์โดยสาร P+ นี้จะหมายถึงสารพีที่มีความหนาแน่นของโฮลสูงเพื่อให้สนามไฟฟ้าบริเวณสารพี-เอ็น มีค่ามากคือ เกิดช่วงที่เรียกว่า "ช่วงอัตราขยาย (Gain region)" หรือ "ช่วงอวาลานซ์(Avalanche region)"
โดยปกติการทวีคูณของกระแสจะเกิดขึ้นเมื่อมีการให้ไบแอสกลับด้วยค่าแรงดันประมาณ15 V ขึ้นไปโดยค่าทวีคูณหรืออัตราขยายอาจมีค่าสูงถึง1,000เท่า รูปแสดงอัตราขยายกระแสของไดโอด APD ที่ทำจากสารกึ่งตัวนำ ซิลิกอน
โดยปกติการทวีคูณของกระแสจะเกิดขึ้นเมื่อมีการให้ไบแอสกลับด้วยค่าแรงดันประมาณ15 V ขึ้นไปโดยค่าทวีคูณหรืออัตราขยายอาจมีค่าสูงถึง1,000เท่า รูปแสดงอัตราขยายกระแสของไดโอด APD ที่ทำจากสารกึ่งตัวนำ ซิลิกอน
รูปแสดงอัตราการขยายกระแสของไดโอดAPDณ ความยาวคลื่นต่างๆ
การทำงานเมื่อมีแสงมาตกกระทบจะทำให้ให้มีการเคลื่อนที่ของอิเล็กตรอนจากสาร N ไปยังสาร
P และเมื่ออิเล็กตรอนเดินทางมายังสาร P อิเล็กตรอนจะได้รับพลังงานจำนวนมากกว่าผลต่างของระดับพลังงานระหว่างแถบความนำและแถบวาเลนซ์เมื่ออิเล็กตรอนได้รับพลังงานมากระตุ้นจะส่งผลให้อิเล็กตรอนมีพลังงานสูงพอที่จะทำให้อิเล็กตรอนและโฮลที่รวมตัวกันอยู่ในช่องว่างบริเวณรอยต่อแตกตัวออกทำให้ช่องว่างบริเวณรอยต่อยิ่งแคบลงส่งผลให้อิเล็กตรอนสามารถข้ามไปรวมตัวกับโฮลได้มากขึ้นและเร็วขึ้น โดย APD มีความไวสูงกว่า PIN ประมาณ 10-20 dB รูปแสดงโครงสร้างและรูปร่างของไดโอดรับแสงแบบ APD
P และเมื่ออิเล็กตรอนเดินทางมายังสาร P อิเล็กตรอนจะได้รับพลังงานจำนวนมากกว่าผลต่างของระดับพลังงานระหว่างแถบความนำและแถบวาเลนซ์เมื่ออิเล็กตรอนได้รับพลังงานมากระตุ้นจะส่งผลให้อิเล็กตรอนมีพลังงานสูงพอที่จะทำให้อิเล็กตรอนและโฮลที่รวมตัวกันอยู่ในช่องว่างบริเวณรอยต่อแตกตัวออกทำให้ช่องว่างบริเวณรอยต่อยิ่งแคบลงส่งผลให้อิเล็กตรอนสามารถข้ามไปรวมตัวกับโฮลได้มากขึ้นและเร็วขึ้น โดย APD มีความไวสูงกว่า PIN ประมาณ 10-20 dB รูปแสดงโครงสร้างและรูปร่างของไดโอดรับแสงแบบ APD
รูปแสดงโครงสร้างและรูปร่างของไดโอดรับแสงแบบ APD
เนื่องจากไดโอด APD ที่นำมาใช้งานจริงในปัจจุบันส่วนใหญ่ทำเป็นชุดหรือ Module เรียบร้อยแล้ว สะดวกสำหรับการติดตั้ง ง่ายต่อการใช้งาน แต่อย่างไรก็ตามยังคงใช้ปรากฏการณ์การขยาย AVALANCHE อยู่ ดังนั้นจึงมีความไวสูงเมื่อเปรียบเทียบกับ PD ทั่วไปและสัญญาณรบกวน (NOISE) ที่เกิดในอุปกรณ์รับแสงที่เรียกว่า SHOT NOISE นี้เป็น NOISE อันเนื่องมาจากการเปลี่ยนแปลงของ Photo current(Ip) ที่เกิดจากการกระตุ้นอิเล็กตรอนอย่างไม่เป็นระเบียบนั่นเอง
ประสิทธิภาพของอุปกรณ์รับแสงจะประเมินจากคุณสมบัติต่างๆ ได้แก่UANTUM EFFIDIENCY ซึ่งแสดงว่าแสงที่รับมานั้นถูกเปลี่ยนเป็นไฟฟ้าได้มากเท่าไร ความไวการรับแสง(ระดับรับแสงต่างๆ สุดที่ต้องการสำหรับการส่งที่มีคุณภาพ)ซึ่งเป็นองค์ประกอบที่สำคัญในการออกแบบระยะห่าง การถ่ายทอดของระบบการสื่อสารด้วยเส้นใยแสง(Repeater Station) สัญญาณรบกวน (NOISE) ที่เกิดขึ้นและความเร็วของการตอบสนองการทำงาน สำหรับ QUANTUM EFFIDIENCY กำหนดจากสารและโครงสร้างของอุปกรณ์รับแสงแสง แต่สำหรับความไวการรับแสงนั้นจะเกี่ยวข้องกับขนาดของแรงดันไฟฟ้าที่ป้อนให้ด้วย (Bias voltage)
รูปหายไปหมดเลยอะคะทำให้ไม่เห็นภาพ
ตอบลบ